

College Algebra

The Division Algorithm: If f(x) and d(x) are polynomials such that $d(x) \neq 0$, and the degree of d(x) is less than or equal to the degree of f(x), then there exist unique polynomials q(x) and r(x) such that

$$f(x) = d(x)q(x) + r(x)$$

where f(x) is dividend, d(x) is divisor, q(x) is quotient, and r(x) is remainder. Also r(x) = 0 or the degree of r(x) is less than the degree of d(x). If the remainder r(x) is zero, then d(x) divides evenly into f(x).

Steps before applying the Division Algorithm:

- 1. Write the terms of the dividend and divisor in descending powers of the variable.
- 2. Insert placeholder with zero coefficients for missing powers of the variable.

Example 1 (without remainder): Divide $6x^3 - 19x^2 + 16x - 4$ by x - 2Think $\frac{6x^3}{x} = 6x^2$ Think $\frac{-7x^2}{x} = -7x$ Think $\frac{2x}{x} = 2$ $6x^2 - 7x + 2$ $x - 2\overline{)6x^3 - 19x^2 + 16x - 4}$ $- \frac{6x^3 - 12x^2}{-7x^2 + 16x}$ Multiply: $6x^2(x-2)$ Subtract and bring down + 16x Multiply: -7x(x-2)Subtract and bring down -4 $- \frac{2x - 4}{\theta}$ Subtract and bring down -4

From the division, you have shown that $6x^3 - 19x^2 + 16x - 4 = (x - 2)(6x^2 - 7x + 2)$ and by factoring the quadratic $6x^2 - 7x + 2$, you have

$$6x^3 - 19x^2 + 16x - 4 = (x - 2)(2x - 1)(3x - 2)$$

Example 2 (with remainder): Divide $x^2 + 3x + 5$ by x + 2

 $x + 2 \leftarrow Quotient$ $x + 1)x^{2} + 3x + 5 \leftarrow Dividend$ $- x^{2} + x \qquad \downarrow$ 2x + 5 - 2x + 2 $3 \leftarrow Remainder$

So, the result is

$$\frac{x^3 + 3x + 5}{x + 1} = x + 2 + \frac{3}{x + 1}$$

If we multiply both sides by x + l, then we get the answer which illustrates the Division Algorithm Theorem above:

$$x^{2} + 3x + 5 = (x + 1)(x + 2) + 3$$

Example 3 (without remainder): Divide $x^3 - 1$ by x - 1

Since there is no x^2 -term or x-term in the dividend $x^3 - 1$, you need to rewrite the dividend as $x^3 + 0x^2 + 0x - 1$

So, the result is

$$\frac{x^3 - 1}{x - 1} = x^2 + x + 1, \ x \neq 1$$

Example 4 (with remainder in linear form): Divide $-5x^2 - 2 + 3x + 2x^4 + 4x^3$ by $2x - 3 + x^2$

Write the terms of the dividend and divisor in descending powers of x.

Notice that after each subtraction we must have three terms. Also, observe that the first subtraction eliminated two terms from the dividend. When this happens, the quotient skips a term. So, the result is

$$\frac{2x^4 + 4x^3 - 5x^2 + 3x - 2}{x^2 + 2x - 3} = 2x^2 + 1 + \frac{x + 1}{x^2 + 2x - 3}$$